Global Mobility Scenarios

TCFD and BoE Conference on Climate Scenarios, Financial Risk and Strategic Planning
November 1, 2017

Sonia Yeh
Professor in Transport and Energy Systems
Department of Space, Earth and Environment
Chalmers University of Technology
Developing scenarios is about anticipating

Global trends

Policy & tech change

Markets and geopolitics
Global Policy Agenda on Sustainable Transport Development Has Shifted to Climate Abatement

• Economic & equity aspects, alongside the environmental (air pollution, congestion, etc)
 • Promoted by international organizations, development banks

• Paris Agreement @ UNFCCC COP21 sets up a new climate policy regime for transport
 • Based on nationally determined contributions (NDC) of parties
 • Parties’ individual & joint assessment of individual & collective progress is critical
NDCs Sees Potential for Ambitious Action and Huge Investment Needs in the Transport Sector
International Transportation Energy Modeling (ITEM)

Organized by

Contributors

Participants
iTEM Activities

Academic
- Comparison of projections,
- Discussion of methodological approaches of existing models,
- Analysis of the fundamental drivers, new technologies, and projected impacts of proposed and existing policies, and
- Exploration of new methods in improving estimates.

Policy insights
- Compare with planned policy targets to
 - Identify possible policy gaps
 - Feasibility of modeling results
- Insights about future trends of development
 - For future policy development
 - For strategic planning and investment decisions
- Shed lights on major sources of uncertainties and how they affects the outcome of the projections
Emission trajectories needed to meet the 2030 and 2050 targets

- 78-174 MMT CO$_2$e reductions in 2030 below the projected reference scenarios

- Cumulative emission reductions from 2010:
 - 270 MMtCO$_2$e by 2020
 - 450 MMtCO$_2$e by 2030
 - 5500 MMtCO$_2$e by 2050
Projected emissions by sector in 2030

Projected emissions in 2030 compared to 2015: BAU

* CA-TIMES applies a different system boundary to Industrial sector
Emission reductions needed across all sectors

Projected emissions in 2030 compared to 2015

- 8-45 MMTCO$_2$e
- 62-87 MMTCO$_2$e

California Case Study

* CA-TIMES applies a different system boundary to Industrial sector
Transport Policy Gaps

<table>
<thead>
<tr>
<th>Models</th>
<th>Committed state policy/goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passenger VMT reduction (%)</td>
<td>8-23 %</td>
</tr>
<tr>
<td>Light-duty ZEV<sup>*</sup></td>
<td>1.2–4 million ZEVs (FCV&BEV) 0.2–2.7 million PHEVs</td>
</tr>
<tr>
<td>Vehicle fleet efficiency</td>
<td>On-road efficiency increases to 46–53 miles/gallon in 2030</td>
</tr>
<tr>
<td>Medium- and heavy-duty ZEVs (000)</td>
<td>0–95</td>
</tr>
<tr>
<td>Biogas/biofuels (billion gge)</td>
<td>3.5–5.9 (17–20% of all transportation fuel)</td>
</tr>
<tr>
<td>Carbon intensity of fuels (% reduction from 2010)</td>
<td>12–22%</td>
</tr>
<tr>
<td>Reduction in gasoline & diesel use (% reduction from 2010)</td>
<td>30–53%</td>
</tr>
<tr>
<td>Mitigation Cost<sup>+++</sup></td>
<td>$112/tCO$_2$e in LDV sector (-$93–10/household/yr)(real, levelized) $315 (2012$/vehicle/yr) for trucking and busing</td>
</tr>
</tbody>
</table>
Major Uncertainty 1: Policy and Consumer Choices

- Vehicle cost
- Fuel cost
- Refueling station availability
- Range Anxiety cost
- Model availability
- New technology risk premium
- Towing capability
- Supply chain logistics
- Willingness to pay
Major Uncertainty 2: Demand Growth

- Huge uncertainty about China: China’s LDV stock
- Will there be 90 million cars or 500 million cars in China by 2050?
Major Uncertainty 3: Three Transitions

1. Electric vehicles
 • Emissions, efficiency benefits
 • Range, cost concerns

2. Autonomous vehicles
 • Safety, traffic benefits
 • Lowering Value of Time could have unknown impact on total distance traveled

3. Mobility as a service (MaaS)
 • Ride-sharing
 • Vehicle ownership model moves toward fleet, away from personal ownership
 • Fewer vehicles on the road, but each one driving more kilometers per year
 • Faster technology turnover
Final Thoughts

• Transport systems play a critical role in future energy transitions
 ➢ Emerging trends will hinge on the development of technology, policy, resource availability, consumer choice, and geopolitics
 ➢ The future is highly uncertain

• New trends and disruptive innovation bring opportunities and challenges